Skip Navigation

Your Cart

Tech Tip #5: Radiators & External Plumbing

Radiators

Thicker radiators do have slightly more airflow resistance than thinner radiators but the difference is minimal. A 4″ radiator has only approximately 10% more airflow resistance than a 2″ radiator.

In past years, hot rodders and racers would sometimes install a thicker radiator and actually notice decreased cooling. They erroneously came to the conclusion that the air could not flow adequately through the thick radiator, and therefore became fully heat-saturated before exiting the rear of the radiator core. The actual explanation for the decreased cooling was not the air flow, but the coolant flow. The older radiators used the narrow tube design with larger cross section. Coolant must flow through a radiator tube at a velocity adequate to create turbulence.

The turbulence allows the water in the center of the tube to be forced against the outside of the tube, which allows for better thermal transfer between the coolant and the tube surface. The coolant velocity actually decreases, and subsequently its ability to create the required turbulence, in direct relation to the increase in thickness. If the thickness of the core is doubled, the coolant velocity is halved. Modern radiators, using wide tubes and less cross section area, require less velocity to achieve optimum thermal transfer. The older radiators benefited from baffling inside the tanks and forcing the coolant through a serpentine configuration. This increased velocity and thus the required turbulence was restored.

Radiators with a higher number of fins will cool better than a comparable radiator with less fins, assuming it is clean. However, a higher fin count is very difficult to keep clean. Determining the best compromise depends on the actual conditions of operation.

Double pass radiators require 16x more pressure to flow the same volume of coolant through them, as compared to a single pass radiator. Triple pass radiators require 64x more pressure to maintain the same volume. Automotive water pumps are a centrifugal design, not positive displacement, so with a double pass radiator, the pressure is doubled and flow is reduced by approximately 33%. Modern radiator designs, using wide/thin cross sections tubes, seldom benefit from multiple pass configurations. The decrease in flow caused by multiple passes offsets any benefits of a high-flow water pump.

Cross flow radiators are superior to upright radiators because the radiator cap is positioned on the low pressure (suction) side of the system. This prevents the pressure created by a high-flow water pump from forcing coolant past the radiator cap at high RPM. As mentioned in the radiator cap section, an upright radiator should be equipped with radiator cap with the highest pressure rating recommended by the manufacturer. The system will still force coolant past the cap at sustained high RPM.

External Plumbing

Street-driven vehicles seldom need auxiliary plumbing or coolant lines. SBC race engines with aluminum cylinder heads usually require extensive external plumbing to address two design problems:

  1. Aluminum heads have much smaller water jackets than cast-iron heads because the external dimensions are similar, but the ports are usually larger, the deck is thicker, and the material near the rocker stands is thicker, all leaving less area in the water jackets. This decreased internal area leaves less area in the water jackets.
  2. The siamese center exhaust ports are a design compromise that presents additional problems when aluminum heads are used. The area near the center exhaust valves is thicker, thus allowing providing less surface area for cooling.

We recommend installing a pair of –10 AN lines that connect the rear of the aluminum cylinder heads to the thermostat housing crossover in the front. This step will help offset the smaller water jackets. A pair of -10AN lines connecting the pressure side of the water pump with the area in the center of the cylinder head (just below the exhaust ports) will offset the lack of surface area due to the extra material.